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A B S T R A C T

This paper investigates the problem of disturbance rejection for SISO uncertain nonlinear minimum phase
systems perturbed by an unmeasurable external disturbance under the framework of robust output regulation.
The model parameters of the systems in question are uncertain, including the control direction. In addition, the
external disturbance can be structured or unstructured but bounded. Towards this end, a novel unknown input
observer (UIO)-based regulator is developed to cancel the external disturbance, and a switching mechanism
with a monitor function is designed to handle the control direction uncertainty. Notable features are that the
unstructured external disturbance can be directly estimated and completely rejected by a sliding mode-based
observer, and this new scheme can be applied to systems with non-unitary relative degrees under unknown
control direction. The boundedness of the closed-loop system and its asymptotic convergence properties are
rigorously proved, which is verified by a numerical example.
1. Introduction

The problem of tracking desired references while rejecting distur-
bances in the presence of model uncertainties, generically known as
robust output regulation, has played a central role throughout the
history of control theory [1]. It can be found in myriad engineer-
ing applications, including active rotor balancing [2], active noise
cancellation [3] and active suspensions [4], etc. Although references
and disturbances are both commonly interpreted as external signals in
the problem of output regulation, the accessibility of these two types
of signals is generally different. In practice, the external disturbance
to be canceled is more difficult to obtain, especially when facing a
time-varying uncertain operating environment. This work particularly
focuses on a rather challenging case where the plant in question is a
single-input-single-output (SISO) uncertain nonlinear system described
by:

̇ = 𝑓 (𝑥, 𝜇) + 𝑔(𝑥, 𝜇) (𝑢 + 𝑑) ,

𝑦 = ℎ(𝑥, 𝜇), (1)

and the disturbance 𝑑 to be canceled is assumed to be an unmeasured
signal generated by exogenous systems. 𝑥 ∈ R𝑛, 𝑢 ∈ R and 𝑦 ∈ R
represent the state, the input, and the output of the plant respectively.
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China under Grant 61973236.
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The vector 𝜇 collects the parameter uncertainty ranging over a given
compact set  ⊂ R𝑝. To be specific, the model uncertainty exists
in vector field 𝑓 (𝑥, 𝜇), input map 𝑔(𝑥, 𝜇), and output map ℎ(𝑥, 𝜇). In
this paper, we denote the sign of the multiplicative term 𝑔(𝑥, 𝜇) as
the control direction, which is unknown. Besides, we assume 𝑔(𝑥, 𝜇) is
bounded and nonzero for all 𝑥 ∈ R𝑛 and 𝜇 ∈  . The overall control
objective is then to find a control signal 𝑢 to recover the zero output of
the system facing all kinds of aforementioned uncertainties.

When the control directions are known, so far plenty of repre-
sentative results have been obtained on the robust output regulation
problem [5–12]. Remarkable is the internal model (IM)-based method
in completely rejecting structured disturbances, even if the information
of disturbances is unknown [6,8]. However, consider the unstructured
disturbances, it is claimed in [7] that no finite-dimensional robust
regulator exists for asymptotic regulation and only approximate or
practical regulation can be obtained, which is one of main drawbacks
for the IM-based method. Sacrificing the asymptotic regulation, ro-
bust control approaches, such as active disturbance rejection control
(ADRC) [9], sliding mode-based control [11,12], and disturbance ob-
server (DOB)-based control [13], are able to effectively cancel both
structured and unstructured disturbances. Reposing upon the high-gain
observer technique, the ADRC and DOB-based control [9,13] can only
167-6911/© 2024 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.sysconle.2024.105747
Received 19 May 2023; Received in revised form 17 December 2023; Accepted 5 F
ebruary 2024

https://www.elsevier.com/locate/sysconle
https://www.elsevier.com/locate/sysconle
mailto:gongyzh2022@shanghaitech.edu.cn
mailto:zhufanglai@tongji.edu.cn
mailto:wangyang4@shanghaitech.edu.cn
https://doi.org/10.1016/j.sysconle.2024.105747
https://doi.org/10.1016/j.sysconle.2024.105747
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2024.105747&domain=pdf


Systems & Control Letters 185 (2024) 105747Y. Gong et al.

𝑀
r
w
𝑚
e
i
a
o
e

2

l
d

d
o
f

𝜂

𝜉

f
𝛼

R
i
I
r
s
i
r

A
𝜂

R
m
l

𝛽
i

𝜂

𝜉

𝑦

w
b
t
l

𝛥

O
𝜉

A

achieve approximate regulation even if disturbances are structured. The
sliding mode-based control [10–12], though achieving exact cancel-
lation of disturbances, requires the system nonlinearity satisfied with
some known expressions.

However, when the control directions are unknown, the robust
output regulation problem in the presence of structured and unstruc-
tured disturbances becomes rather challenging. Nussbaum-type func-
tions have been effectively incorporated in the control design of several
proposals in the literature, such as [14–16], but the transient behavior
is often unacceptable in practical implementation problems. In [17,18],
the system nonlinearity is assumed to be satisfied with some known
bounding functions, instead a switching logic by monitoring a certain
performance index is designed. Similarly, in [19], by considering lin-
ear systems and assuming that other disturbances are norm-bounded,
the monitor function is incorporated into ADRC to solve this prob-
lem. Recently, rather than resorting to the monitor function, a barrier
function-based prescribed performance control method in [20] has
solved such a problem without any knowledge of the system nonlin-
earity or the control direction. However, in [19,20], only practical
regulation can be obtained.

In this paper, to the best of the authors’ knowledge, our work is
the first to achieve exact cancellation of both structured and unstructured
disturbances for systems with no knowledge of the system nonlinearity or
the control direction. Sharing a similar idea of monitoring a certain
performance index with [17,18], we incorporate a switching signal into
the regulator to overcome the difficulty of unknown control direction.
By resorting to a novel interval observer-based UIO combined with
the regulator, exact cancellation of both structured and unstructured
disturbances is achieved. We show that after finite switching, once the
control input 𝑢 is unsaturated, the output 𝑦 is asymptotically regulated
to zero and the closed-loop system remains bounded. However, we
restrict the system in question to be locally input-to-state stable and
strongly minimum phase. If the system is input-to-state stable, our
result turns out to be semi-global regulation.

The main novelties lie in the following:

(1) With the least prior knowledge of the plant and disturbance, the
proposed control protocol secures asymptotic regulation, which
is robust to the uncertain parameter set  .

(2) Without knowledge of the system nonlinearity or the control
direction, the structured and unstructured disturbance can be
directly reconstructed and completely rejected.

Notations: In this paper, ‖ ⋅ ‖ represents the Euclidean norm of the
matrices or vectors. For any constant matrix or vector 𝑀 ∈ R𝑚×𝑛 (R𝑚),

> (≥, <,≤) 0 means that all elements of 𝑀 are > (≥, <,≤) 0
espectively. Denote 𝑀+ = max {𝑀, 0} and 𝑀− = max {−𝑀, 0}. Thus,
e have 𝑀 = 𝑀+ −𝑀− and |𝑀| = 𝑀+ +𝑀−, where |𝑀| stands for a
×𝑛 matrix (𝑚×1 vector) formed by taking the absolute value of every

lement of 𝑀 . In addition, for any square matrix 𝑁 ∈ R𝑛×𝑛, matrix 𝑁
s Metzler if its off-diagonal components are all non-negative. 𝜆max(𝑁)
nd 𝜆min(𝑁) are denoted as the maximum and minimum eigenvalues
f matrix 𝑁 . In this paper, the solution of discontinuous differential
quations is understood in Filippov’s definition [21].

. Problem formulation

In this section, we first reformulate the disturbance rejection prob-
em such that an interval observer-based UIO can be employed to
esign an output feedback regulator to steer the output to zero.

Suppose the system (1) in question has a well-defined relative
egree 𝑟, then through a possible parameter-dependent change of co-
rdinates denoted by 𝑥 ↦

(

𝜂, 𝜉
)

, it can be transformed into the normal
orm [22, Theorem 13.1] described by:

̇ = 𝑓0(𝜂, 𝜉, 𝜇)
̇

2

= 𝐴𝑐𝜉 + 𝐵𝑐𝑏(𝜂, 𝜉, 𝜇)𝑢 + 𝐵𝑐 (𝑏(𝜂, 𝜉, 𝜇)𝑑 + 𝑎(𝜂, 𝜉, 𝜇))
𝑦 = 𝐶𝑐𝜉 (2)

where 𝜂 ∈ R𝑛−𝑟, 𝜉 ∶=
(

𝜉1 ⋯ 𝜉𝑟
)⊤ ∈ R𝑟, 𝑓0(𝜂, 𝜉, 𝜇), 𝑎(𝜂, 𝜉, 𝜇)

and 𝑏(𝜂, 𝜉, 𝜇) are smooth state-dependent nonlinear functions, besides
𝑓0(0, 0, 𝜇) = 0 and 𝑎(0, 0, 𝜇) = 0 while the pair

{

𝐴𝑐 , 𝐵𝑐 , 𝐶𝑐
}

is

𝐴𝑐 =
(

𝟎(𝒓−𝟏)×𝟏 𝐈(𝐫−𝟏)×(𝐫−𝟏)
0 𝟎𝟏×(𝒓−𝟏)

)

,

𝐵𝑐 =
(

𝟎𝟏×(𝒓−𝟏) 1
)⊤ , 𝐶𝑐 =

(

1 𝟎𝟏×(𝒓−𝟏)
)

.

We make the following assumptions regarding the system (2):

Assumption 2.1. There exist two known positive constants 𝑏min, 𝑏max
such that

0 < 𝑏min ≤ |𝑏(𝜂, 𝜉, 𝜇)| ≤ 𝑏max (3)

for all (𝜂, 𝜉) ∈ R𝑛 and 𝜇 ∈  .

Remark 2.1. Note that, 𝑏(𝜂, 𝜉, 𝜇) = 𝐿𝑔𝐿𝑟−1
𝑓 ℎ(𝑥, 𝜇) represents the

high-frequency gain of the plant (2). In this paper, without the prior
knowledge of its sign, we assume it is bounded away from zero by some
known values 𝑏min, 𝑏max and cannot change its sign for all (𝜂, 𝜉) ∈ R𝑛.

Assumption 2.2. Let 𝑙 > 0, 0 < 𝜌 < 1
2 be any positive constants,

assume the unknown disturbance is norm-bounded satisfying |𝑑(𝑡)| ≤
𝜌𝑙. Consider system (2), there exists a differentiable continuous function
𝑉1 satisfying 𝛼0(‖(𝜂, 𝜉)‖) ≤ 𝑉1(𝑡, 𝜂, 𝜉) ≤ 𝛼0(‖(𝜂, 𝜉)‖) for some class-
functions 𝛼0(⋅), 𝛼0(⋅) such that for all 𝜇 ∈  ,

𝑉̇1 ≤ −𝛼0(‖𝜂, 𝜉‖) + 𝛼1(|𝑢 + 𝑑|)

or |𝑢 + 𝑑| ≤ 𝑙 and ‖(𝜂(0), 𝜉(0))‖ ≤ 𝑙0 where 𝑙0 > 0 depends on 𝑙,
0(⋅), 𝛼1(⋅) are some class- functions.

emark 2.2. Assumption 2.2 implies that the system (2) is locally
nput-to-state stable (ISS). If 𝑙 = +∞, Assumption 2.2 is reduced to the
SS property and is not restrictive, since there are a large number of
obust control methods such as ‘‘𝐻∞ control’’ [23] and ‘‘high gain’’
tabilization [24] to achieve such stability property. Such a hypothesis
s also assumed in rich literature [25–28] focusing on disturbance
ejection.

ssumption 2.3. The system 𝜂̇ = 𝑓0(𝜂, 𝜉, 𝜇) is ISS with respect to state
and input 𝜉 for all the initial condition 𝜂(0) ∈ R𝑛−𝑟.

emark 2.3. Assumption 2.3 implies that the system (2) is strongly
inimum phase, which is a standard assumption in the topic of non-

inear output regulation [6,8,24,29].

To facilitate the controller design, we add and subtract a term
𝑆𝑞(𝑡)𝑢 to the right-hand side of the dynamic of 𝜉𝑟, then system (2)
s rewritten in a compact form:

̇ = 𝑓0(𝜂, 𝜉, 𝜇)
̇ = 𝐴𝑐𝜉 + 𝐵𝑐

(

𝛽𝑆𝑞𝑢 + 𝛥(𝜂, 𝜉, 𝑢, 𝑑, 𝜇)
)

= 𝐶𝑐𝜉 (4)

here 𝛽 is a positive constant to be determined later, and 𝑆𝑞(𝑡) is a
inary switching signal governed by a scheme that will be designed in
he next section, to cycle through the set {−1, 1}. Note that, 𝛥 is the
umped uncertainty in the form of

(𝜂, 𝜉, 𝑢, 𝑑, 𝜇)∶=𝑎(𝜂, 𝜉, 𝜇) +𝑏(𝜂, 𝜉, 𝜇)(𝑢 + 𝑑) −𝛽𝑆𝑞𝑢. (5)

ne more assumption needs to be made for the initial condition of state
in (4) as follows:

ssumption 2.4. There exist two known constant vectors 𝜉𝑎(0) and
𝜉 (0) conforming to 𝜉 (0) ≤ 𝜉(0) ≤ 𝜉 (0) for all 𝜇 ∈  .

𝑎 𝑎 𝑎
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Remark 2.4. The disturbance here is not necessarily differentiable
continuous but only bounded. However, we cannot tolerate an arbi-
trarily large disturbance, since system (2) is locally ISS with restrictions
‖(𝜂(0), 𝜉(0))‖ ≤ 𝑙0 on initial conditions and |𝑢 + 𝑑| ≤ 𝑙 on inputs.

Now, concerning the interconnected system (4), the output regula-
ion problem can be formally cast as:

roblem 2.1. Suppose Assumptions 2.1–2.4 hold. Given any pos-
tive constant 𝑙, design a control law 𝑢 for system (4) perturbed
y disturbance 𝑑 bounded by 𝑑 ∶= 𝜌𝑙, such that the closed-loop

trajectories starting from any initial condition (𝜂(0), 𝜉(0)) ∈  ∶=
{

(𝜂(0), 𝜉(0)) ∶ ‖(𝜂(0), 𝜉(0))‖ ≤ 𝑙0
}

are bounded and the output 𝑦 of the
lant asymptotically converges to zero as time goes to infinity. ⊲

For the sake of clarity, hereafter the uncertainty parameter vector
is ignored when no confusion is caused.

. Controller design

This section aims to design the control law 𝑢 that solves Problem 2.1.
or simplicity, the time argument has been omitted in the sequel unless
ecessary. Thanks to the controllability of the matrix pair

{

𝐴𝑐 , 𝐵𝑐
}

, we
ropose the following certainty-equivalent control law:

= 𝑢 Sat

[

−𝐾𝜉 − 𝛥
𝑢𝛽𝑆𝑞

]

(6)

n which 𝜉 and 𝛥 stand for the estimates for 𝜉 and 𝛥. The saturation
unction is defined as

at [𝑥] =
{

𝑥, if |𝑥| ≤ 1
sign(𝑥), if |𝑥| > 1

(7)

or any scalar variable 𝑥. The control gain 𝐾 ∈ R𝑟 is chosen such
hat matrix 𝐴𝑐 − 𝐵𝑐𝐾 is Hurwitz and the selection of positive constant
𝑢 ∈ R will be discussed later. 𝛽 and 𝑆𝑞 is first introduced in (4). Fig. 1
depicts the overview of the proposed control architecture whose basic
components are composed of the switching scheme updating 𝑆𝑞 and the
UIO including the estimates of 𝜉 and 𝛥.

With  being a fixed compact set of the initial conditions of the
ystem (2), 𝑟 is defined as a closed ball of radius 𝑟 such that  ⊂ 𝑟.
hanks to Assumption 2.2, if 𝑢 is designed to be 𝑢 ≤ (1 − 𝜌)𝑙 such that

|𝑢 + 𝑑| ≤ 𝑙, then the compact set 𝑟 is a forward invariant set for system
4) with 𝑟 depending on 𝑙 and 𝑙0. In this context, 𝜉 and 𝛥 will be given by
high-order sliding mode (HOSM) differentiator and a novel unknown

nput re-constructor inspired by [30] respectively.

.1. HOSM differentiator

In what follows, a HOSM differentiator is proposed as a finite-time
bserver for 𝜉.

To this end, we first show that the lumped uncertainty 𝛥 is bounded
y |𝛥(𝜂, 𝜉, 𝑢, 𝑑)| ≤ 𝛥

∗
with

𝛥
∗
∶= sup

(𝜂,𝜉)∈𝑟

|𝑎(𝜂, 𝜉)| + (𝑏max + 𝛽)𝑢 + 𝑏max𝑑. (8)

and from (4) and (8), the following state-dependent upper bound for
𝑟th-order derivative of the output signal 𝑦 satisfies

|𝜉̇𝑟| ≤ 𝛽𝑢 + 𝛥
∗
. (9)

Inspired by [10] and in light of (9), we are ready to propose a HOSM
differentiator for 𝜉 as follows,
̇̂𝜉𝑖 = 𝜉𝑖+1 + 𝜈̂𝑖, 𝑖 = 1,… , 𝑟 − 1
̇̂
𝑟 = 𝛽𝑆𝑞𝑢 + 𝜈̂𝑟, (10)

where 𝜉 ∶=
(

𝜉1 ⋯ 𝜉𝑟
)⊤ ∈ R𝑟, and 𝜈̂ ∶=

(

𝜈̂1 ⋯ 𝜈̂𝑟
)⊤ ∈ R𝑟 is

generated by

̂ = 𝜏 
1

𝑟+1−𝑖 |𝜈̂ |

𝑟−𝑖
𝑟+1−𝑖 sign(𝜈̂ ), 𝑖 = 1,… , 𝑟 (11)
3

𝑖 𝑖 | 𝑖−1| 𝑖−1 𝜉
Fig. 1. Schematic of the proposed UIO-based controller with a switching strategy. The
blue area in (a) contains the monitor function, driven by the estimate from UIO. The
former is described in Section 3.3 while the latter is delineated in Sections 3.1 and
3.2, whose structure is depicted in (b).

and 𝜈̂0 = 𝑦 − 𝜉1 with 𝜏𝑖, being positive tuning gains. The finite-time
convergence property of 𝜉 ∶= 𝜉 − 𝜉 is established in the next lemma.

Lemma 3.1. Consider the HOSM differentiator (10), if the parameters 𝜏𝑖
are chosen such that the Laplace characteristic polynomial 𝑠𝑟 +∑𝑟

𝑖=1 𝜏𝑖𝑠
𝑖−1

is Hurwitz, and static gain  satisfies

 ≥ 𝛽𝑢 + 𝛥, (12)

where 𝛥 is a positive constant satisfying 𝛥 ≥ 𝛥
∗
, then, 𝜉 converges to zero

n some finite time 𝑇1 > 0. ⊲

roof. In view of (4) and (10), the dynamics of the estimation error 𝜉
can be obtained as
̇̃
𝑖 = 𝜉𝑖+1 + 𝜈̂𝑖, 𝑖 = 1,… , 𝑟 − 1
̇̃
𝑟 ∈ 𝜈̂𝑟 +

[

−𝛥, 𝛥
]

, (13)

hose structure is same as that of system (32) in [10]. Thus, appealing
o the results indicated in [10, Theorem 5], it can be concluded that
he finite time convergence property of 𝜉 is obtained if the static gain

fulfills  ≥ ∗ ∶= 𝛽𝑢 + 𝛥 and parameters 𝜏𝑖 are chosen such that the
Laplace characteristic polynomial 𝑠𝑟 +∑𝑟

𝑖=1 𝜏𝑖𝑠
𝑖−1 is Hurwitz. □

Remark 3.1. For practical implementation, a proper choice of 𝜏𝑖 can
e found in [31,32]. Also, we can always select a sufficiently large . In

addition, the estimation error 𝜉 is bounded during its transient period.

3.2. Interval observer-based estimator

In this subsection, we will develop an interval observer-based esti-
mator for 𝛥 in (5) that features a finite-time convergence property as
well.

Thanks to the observability of the matrix pair
{

𝐴𝑐 , 𝐶𝑐
}

, an interval
observer for 𝜉-system (4) is constructed as:

𝜉(𝑡) = (𝑄−1)+𝜍(𝑡) − (𝑄−1)−𝜍(𝑡),

(𝑡) = (𝑄−1)+𝜍(𝑡) − (𝑄−1)−𝜍(𝑡), (14)
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𝑧

𝑦

where the dynamics of 𝜍 and 𝜍 are governed by

𝜍̇ = 𝑄𝐴𝑐𝑄
−1𝜍 +𝑄𝐵𝑐𝛽𝑆𝑞𝑢 +𝑄𝛾(𝑦 − 𝐶𝑐𝑄

−1𝜍)

+ (𝑄𝐵𝑐 )+𝛥 − (𝑄𝐵𝑐 )−(−𝛥),

̇ = 𝑄𝐴𝑐𝑄
−1𝜍 +𝑄𝐵𝑐𝛽𝑆𝑞𝑢 +𝑄𝛾(𝑦 − 𝐶𝑐𝑄

−1𝜍)

+ (𝑄𝐵𝑐 )+(−𝛥) − (𝑄𝐵𝑐 )−𝛥, (15)

n which 𝑄 ∈ R𝑟×𝑟 and 𝛾 ∈ R𝑟 will be determined later, 𝛥 is a positive
constant fulfilling 𝛥 ≥ 𝛥

∗
in (12), and the initial conditions are set as

(0) = 𝑄+𝜉
𝑎
(0)−𝑄−𝜉𝑎(0) and 𝜍(0) = 𝑄+𝜉𝑎(0)−𝑄−𝜉

𝑎
(0). System (14) is the

o-called interval observer whose property is asserted by the following
roposition.

roposition 3.1. Under Assumption 2.4, the state of system (14) verifies
≤ 𝜉 ≤ 𝜉 for all 𝑡 ≥ 0, if the gain vector 𝛾 together with the matrix 𝑄 is

chosen such that the matrix 𝑄(𝐴𝑐 − 𝛾𝐶𝑐 )𝑄−1 is not only Hurwitz but also
Metzler. ⊲

The proof can be found in Appendix A.

emark 3.2. The construction of an invertible matrix 𝑄 and a vector
such that 𝑄(𝐴𝑐 − 𝛾𝐶𝑐 )𝑄−1 is not only Hurwitz but also Metzler can be

ollowed by the procedures in [33]. It can be concluded as follows:

(1) Select a diagonal matrix 𝑅 ∈ R𝑟×𝑟 with its diagonal elements
distinct and all negative. 𝛾 is obtained such that (𝐴𝑐 − 𝛾𝐶𝑐 ) and 𝑅
have the same eigenvalues.

(2) Choose vectors 𝑒1, 𝑒2 ∈ R𝑟 such that the pairs (𝐴𝑐 − 𝛾𝐶𝑐 , 𝑒1) and
(𝑅, 𝑒2) are observable. The observable matrices 1 and 2 are

defined as 1 =
⎛

⎜

⎜

⎝

𝑒1
⋮

𝑒1(𝐴𝑐 − 𝛾𝐶𝑐 )𝑟−1

⎞

⎟

⎟

⎠

;2 =
⎛

⎜

⎜

⎝

𝑒2
⋮

𝑒2𝑅𝑟−1

⎞

⎟

⎟

⎠

.

(3) Finally, calculate 𝑄 = −1
2 1.

Now, based on the HOSM differentiator (10) and the interval ob-
erver (14), we are ready to employ an algebraic unknown input
econstruction method proposed by [30] to estimate the lumped uncer-
ainty 𝛥 in (5). From Proposition 3.1, we have 𝜉 ≤ 𝜉 ≤ 𝜉 holds for all
𝑡 ≥ 0, which implies 𝜉

𝑟
≤ 𝜉𝑟 ≤ 𝜉𝑟, thus there must exist a time-varying

calar 𝜑𝑟(𝑡) ∈ [0, 1] such that

𝑟 = 𝜑𝑟𝜉𝑟 + (1 − 𝜑𝑟)𝜉𝑟 = 𝜑𝑟(𝜉𝑟 − 𝜉
𝑟
) + 𝜉

𝑟
. (16)

Then differentiating (16) yields

𝜉̇𝑟 = 𝜑̇𝑟(𝜉𝑟 − 𝜉
𝑟
) + 𝜑𝑟(𝜉̇𝑟 − 𝜉̇

𝑟
) + 𝜉̇

𝑟
. (17)

hanks to the fact that (𝑄−1)+ + (𝑄−1)− = |𝑄−1
| and in view of (14), it

ollows that

𝜉 − 𝜉 =
(

(𝑄−1)+ + (𝑄−1)−
)

𝜍 −
(

(𝑄−1)− + (𝑄−1)+
)

𝜍

= |

|

|

𝑄−1|
|

|

⌢𝜍 (18)

ith ⌢𝜍 ∶= 𝜍 − 𝜍 whose dynamic is governed by

̇ = 𝑄(𝐴𝑐 − 𝛾𝐶𝑐 )𝑄−1⌢𝜍 + |

|

𝑄𝐵𝑐
|

|

⌢
𝛥 (19)

here
⌢
𝛥 ∶= 2𝛥. Further, referring to (14) and (15), it holds that

𝜉̇ = (𝑄−1)+𝜍̇ − (𝑄−1)−𝜍̇

= 𝑀1𝜍 −𝑀2𝜍 + 𝛾𝑦 +𝑁1(−𝛥) −𝑁2𝛥 + 𝐵𝑐𝛽𝑆𝑞𝑢

where

𝑀1 = (𝑄−1)+𝑄(𝐴𝑐 − 𝛾𝐶𝑐 )𝑄−1,

𝑀2 = (𝑄−1)−𝑄(𝐴𝑐 − 𝛾𝐶𝑐 )𝑄−1,

𝑁1 = (𝑄−1)+(𝑄𝐵𝑐 )+ + (𝑄−1)−(𝑄𝐵𝑐 )−,

𝑁2 = (𝑄−1)+(𝑄𝐵𝑐 )− + (𝑄−1)−(𝑄𝐵𝑐 )+.
4

As a result, in terms of 𝜉̇𝑟, above equations suggest that

𝜉𝑟 − 𝜉
𝑟
= 𝑓1(

⌢𝜍),

𝜉̇𝑟 − 𝜉̇
𝑟
= 𝑓2(

⌢𝜍),

𝜉̇
𝑟
= 𝑓3

(

𝜍, 𝜍
)

+ 𝛽𝑆𝑞𝑢 (20)

where

𝑓1(
⌢𝜍) = 𝐵⊤

𝑐
|

|

|

𝑄−1|
|

|

⌢𝜍, (21)

𝑓2(
⌢𝜍) = 𝐵⊤

𝑐
|

|

|

𝑄−1|
|

|

(

𝑄
(

𝐴𝑐 − 𝛾𝐶𝑐
)

𝑄−1⌢𝜍 + |

|

𝑄𝐵𝑐
|

|

⌢
𝛥
)

,

3

(

𝜍, 𝜍
)

= 𝐵⊤
𝑐 (𝑀1𝜍 −𝑀2𝜍 + 𝛾𝑦 +𝑁1(−𝛥) −𝑁2𝛥).

Now, substituting (20) into (17) yields

𝜉̇𝑟 = 𝜑̇𝑟𝑓1(
⌢𝜍) + 𝜑𝑟𝑓2(

⌢𝜍) + 𝑓3(𝜍, 𝜍) + 𝛽𝑆𝑞𝑢. (22)

Meanwhile, recalling the second equation of (4), we have 𝜉̇𝑟 = 𝛽𝑆𝑞𝑢+𝛥
that, together with (22), gives

𝛥 = 𝜑̇𝑟𝑓1(
⌢𝜍) + 𝜑𝑟𝑓2(

⌢𝜍) + 𝑓3(𝜍, 𝜍). (23)

Now, an unknown input reconstruction of 𝛥 in (5) is given:

𝛥 = ̂̇𝜑𝑟𝑓1(
⌢𝜍) + 𝜑̂𝑟𝑓2(

⌢𝜍) + 𝑓3(𝜍, 𝜍) (24)

where ̂̇𝜑𝑟 and 𝜑̂𝑟 are the estimate of 𝜑̇𝑟 and 𝜑𝑟, respectively. To proceed,
due to (16), 𝜑̂𝑟 can be computed by

̂ 𝑟 =
𝜉𝑟 − 𝜉

𝑟
+ 𝜖

𝜉𝑟 − 𝜉
𝑟
+ 𝜖

(25)

with 𝜖 = 1, if 𝜉𝑟 = 𝜉
𝑟
; otherwise, 𝜖 = 0. As for the estimate of 𝜑̇𝑟 denoted

y ̂̇𝜑𝑟, we again resort to Levant’s second-order sliding model observer
n [10] as follows:

̇ 1 = 𝜄1, 𝜄1 = −𝜅1||𝜌1 − 𝜑̂𝑟
|

|

1
2 sign(𝜌1 − 𝜑̂𝑟) + 𝜌2,

̇ 2 = −𝜅2sign(𝜌2 − 𝜄1),

̂̇ 𝑟 = 𝜌2 (26)

where two positive scalar gains 𝜅𝑖, 𝑖 = 1, 2 are chosen properly and
recursively.

Proposition 3.2. Suppose Assumption 2.4 holds, the estimator 𝛥 in (24)
that consists of (15), (21), (25) and (26) is able to provide an exact estimate
for the lumped uncertainty 𝛥 in (5) within a finite time, that is, there exists
a time instant 𝑇2 > 0 such that the estimation error 𝛥 ∶= 𝛥 − 𝛥 = 0, for all
𝑡 ≥ 𝑇2. ⊲

Proof. From (23) and (24), we can deduce that

𝛥 = ̃̇𝜑𝑟(𝑡)𝑓1(
⌢𝜍) + 𝜑̃𝑟(𝑡)𝑓2(

⌢𝜍)

with ̃̇𝜑𝑟(𝑡) ∶= ̂̇𝜑𝑟(𝑡)− 𝜑̇𝑟(𝑡) and 𝜑̃𝑟(𝑡) ∶= 𝜑̂𝑟−𝜑𝑟. According to Lemma 3.1,
the finite-time convergence property of 𝜉𝑟 implies 𝜑̃𝑟 = 0 for all 𝑡 ≥
𝑇1. Since (26) features the same structure with (10), one can easily
conclude that, after another period, say 𝑡𝑓 , ̂̇𝜑𝑟 must equal to 𝜑̇𝑟. Then,
setting 𝑇2 ∶= 𝑇1 + 𝑡𝑓 , we have 𝛥 = 0 for all 𝑡 ≥ 𝑇2. Moreover,
the estimation error 𝛥 is bounded during its transient period, thus
completing the proof. □

3.3. Switching scheme and monitor function design

Before we discuss the switching scheme of 𝑆𝑞 , we revert to system
2) and rewrite it for convenience as

̇ = 𝐅(𝑧) +𝐆(𝑏(𝑧)𝑢 + 𝑏(𝑧)𝑑),

= 𝐂𝑧, (27)
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with 𝑧 ∶=
(

𝜂⊤ 𝜉⊤
)⊤ ∈ R𝑛 and

𝐅(𝑧) =
(

𝑓0(𝑧)
(

𝟎𝑛−𝑟 𝐴𝑐
)

𝑧 + 𝐵𝑐𝑎(𝑧)

)

, 𝐆 =
(

𝟎𝑛−𝑟
𝐵𝑐

)

,

𝐂 =
(

𝟎𝑛−𝑟 𝐶𝑐
)

.

Since we have chosen an upper boundary for 𝑢 before Section 3.1,
.e., 𝑢 ≤ (1 − 𝜌)𝑙, the finite-time convergence properties of the estimate

errors 𝜉 and 𝛥 are ensured by Lemma 3.1 and Proposition 3.2. However,
to recover the asymptotic stability of the unforced system, 𝑢 should
e selected such that the ultimate boundary of the unsaturated term
0 ∶= −𝐾𝜉−𝛥

𝛽𝑆𝑞
is smaller than 𝑢. Keeping this in mind, we will state it

ormally in the following proposition.

roposition 3.3. Suppose Assumptions 2.1–2.4 hold, consider any
onstant 𝑙 and compact set 𝑟, the latter being forward invariant for the
losed-loop system (27), which satisfies  ⊂ 𝑟. When 𝑆𝑞 = sign(𝑏(𝑧)),∀𝑧 ∈
𝑟 and select 𝛽 ≥ 𝑏max, if 𝑙0 ≤ 𝑐(𝑙) with 𝑐 being some class- function
such that there exists a 𝑢 satisfying 𝑢 ≥ 𝑑 + 1

𝑏min
sup𝑧∈𝑟

𝛼(‖𝑧‖), in which
𝛼(‖𝑧‖) ∶= |𝐾𝜉 + 𝑎(𝑧)|, then there exists a time instant 𝑇 ∗ such that the
unsaturated term 𝑢0 = −𝐾𝜉−𝛥

𝛽𝑆𝑞
is norm-bounded by |𝑢0| ≤ 𝑢 after 𝑡 ≥ 𝑇 ∗,

hat is 𝑢 = 𝑢0, ∀𝑡 ≥ 𝑇 ∗. ⊲

The proof can be found in Appendix B.

emark 3.3. If 𝑙 = +∞, system (2) is ISS with respect to the inputs
, 𝑑 and states 𝜂, 𝜉. The upper boundary and lower boundary of 𝑢 are

naturally valid. Then, our results turn out to be semi-global regulation
of the regulated output.

Finally, a switching scheme is proposed as

𝑆𝑞(𝑡𝑘+1) = −𝑆𝑞(𝑡𝑘),

𝑡𝑘+1 = inf
{

𝑡 > 𝑡𝑘 ∶ ‖𝜉(𝑡)‖ = 𝛹𝑘(𝑡)
}

, (28)

where the switching instant 𝑡𝑘, 𝑘 ∈ {0, 1, 2,…} determines the change
of 𝑆𝑞 , at which 𝑆𝑞 cycles through the set {−1, 1}. The switching scheme
is initialized at 𝑡0 = 0. A sequence of signals 𝛹𝑘(𝑡) for all 𝑘 ∈ {0, 1, 2,…}
is defined as

𝛹𝑘(𝑡) = 𝛩(𝑘)𝑒−𝜆𝑚(𝑡−𝑡𝑘)‖𝜉(𝑡𝑘)‖, (29)

where 𝜆𝑚 is a sufficiently small positive constant to be determined later
and 𝛩(𝑘) is a user-defined non-decreasing function of the augment 𝑘
satisfying 𝛩(𝑘) > 1. The monitor function 𝛹 can thus be defined as

𝛹 (𝑡) ∶= 𝛹𝑘(𝑡), 𝑡 ∈
[

𝑡𝑘, 𝑡𝑘+1
)

⊂ [0,+∞) . (30)

Note that, from (29) and (30), one can easily see ‖𝜉(𝑡𝑘)‖ < 𝛹𝑘(𝑡𝑘) at
𝑡 = 𝑡𝑘 for all 𝑘 ∈ {0, 1, 2,…}. Moreover, it is trivial to obtain the
following inequality:

‖𝜉(𝑡)‖ ≤ 𝛹 (𝑡) (31)

for all 𝑡 ≥ 0.

Remark 3.4. In fact, we can choose a non-decreasing function with
a fast ramping rate to substantially reduce the number of switching. If
𝛩(𝑘) exceeds the finite accuracy, then a function with a linear ramping
rate can be selected, with a tradeoff for a larger switching number.

4. Stability analysis

In this section, consider the system (1) that can be transformed into
its normal form (2), its compact form is rewritten in (27). Then, with
the controller (6), the entire closed-loop system is in the form of

̇ = 𝐅(𝑧) +𝐆
(

𝑏(𝑧)𝑢 Sat

[

−𝐾𝜉 − 𝛥
𝑢𝛽𝑆𝑞

]

+ 𝑏(𝑧)𝑑

)

,

𝑦 = 𝐂𝑧, (32)
5

t

where 𝜉 and 𝛥 are given by the finite-time estimators (10) and (24) and
𝑆𝑞 is generated by the switching scheme in (28).

Now, we proceed with the stability analysis of the closed-loop
system (32), and the main result is shown in the following:

Theorem 4.1. Suppose Assumptions 2.1–2.4 hold. Given any positive
constant 𝑙, there exist choices of 𝑢, 𝑙0, 𝛽, ∗, 𝛥

∗
and 𝜆∗𝑚 such that for all

𝑙0 ≤ 𝑐(𝑙), 𝛽 ≥ 𝑏max,  ≥ ∗, 𝛥 ≥ 𝛥
∗

in (12) and 𝜆𝑚 ≤ 𝜆∗𝑚 in (29), the closed-
loop trajectories (32) with any initial condition 𝑧(0) ∈  are all bounded
and lim𝑡→∞ 𝑦(𝑡) = 0, thus the problem of output regulation is solved. ⊲

Proof. According to Assumption 2.2, state 𝑧 of the closed-loop system
is bounded within 𝑟 since 𝑢 satisfies 𝑢 ≤ (1 − 𝜌)𝑙. As a consequence,
as long as  is sufficiently large, then in virtue of Lemma 3.1 and
Proposition 3.2, it holds that the estimation errors 𝜉 and 𝛥 equal to
zero after some time 𝑇 ′ and during their transient period, 𝜉 and 𝛥 are
ounded, which implies the boundedness of the estimates 𝜉 and 𝛥.

Next, we are ready to prove the switching of 𝑆𝑞 in (28) stops by
ontradiction. Suppose the switching does not stop, that is 𝑘 → +∞.

Thus, there exists either an infinite odd or infinite even sequence 𝛯 such
that for all 𝑗 ∈ 𝛯, 𝑆𝑞(𝑡) coincides with the sign of 𝑏(𝑧) during the time
interval 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1). From Proposition 3.3, there must exist another
time instant 𝑇 ≥ 𝑇 ′ and a positive constant 𝑗′ such that for all 𝑗 ≥ 𝑗′

and 𝑡𝑗′ ≥ 𝑇 , it holds |𝑢0| ≤ 𝑢 as well as 𝜉 = 0 and 𝛥 = 0,∀𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1).
Hence, ∀𝑗 ≥ 𝑗′, during the time interval 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1), the closed-loop
system becomes

̇ = 𝐅̄(𝑧) (33)

with

𝐅̄(𝑧) =
(

𝑓0(𝑧)
(

𝟎𝐧−𝐫 𝐴𝑐 − 𝐵𝑐𝐾
)

𝑧

)

.

ecalling 𝑧 =
(

𝜂⊤ 𝜉⊤
)⊤, from (33) one is able to obtain the dynamic

f 𝜉 as 𝜉̇ = (𝐴𝑐 − 𝐵𝑐𝐾)𝜉. For this dynamic equation, we introduce a
yapunov candidate function 𝑉2 =

√

𝜉⊤𝑃𝜉𝜉, ∀𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1), 𝑗 ≥ 𝑗′,
where 𝑃𝜉 is a symmetric and positive definite solution of the Lyapunov
equation (𝐴𝑐 −𝐵𝑐𝐾)⊤𝑃𝜉 +𝑃𝜉 (𝐴𝑐 −𝐵𝑐𝐾) = −𝐈𝑟. Then, the time derivative
f 𝑉2 along the dynamic of 𝜉 satisfies

𝑉̇2 ≤ − 1
2𝜆max(𝑃𝜉 )

𝑉2, ∀𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1), 𝑗 ≥ 𝑗′

Next, utilizing the comparison lemma [22, Lemma 3.4], it follows
that

‖𝜉(𝑡)‖ ≤ 𝛴(𝑡), ∀𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1), 𝑗 ≥ 𝑗′ (34)

ith

(𝑡) ∶=
𝜆max(𝑃𝜉 )
𝜆min(𝑃𝜉 )

𝑒−𝜆
∗
𝑚(𝑡−𝑡𝑗 )

‖𝜉(𝑡𝑗 )‖

and 𝜆∗𝑚 ∶= 1
2𝜆max(𝑃𝜉 )

.
When 𝑗 → +∞, there must exist a positive constant 𝑗∗ satisfying

𝑗∗ ≥ 𝑗′ such that the inequality

𝛩(𝑗∗)‖𝜉(𝑡𝑗∗ )‖ = 𝛩(𝑗∗)‖𝜉(𝑡𝑗∗ )‖ >
𝜆max(𝑃𝜉 )
𝜆min(𝑃𝜉 )

‖𝜉(𝑡𝑗∗ )‖

holds since 𝜉 = 0 after 𝑡 ≥ 𝑇 . Thus, 𝛹𝑗∗ (𝑡) > 𝛴(𝑡) ≥ ‖𝜉(𝑡)‖, for all
∈ [𝑡𝑗∗ , 𝑡𝑗∗+1). At the time instant 𝑡 = 𝑡𝑗∗+1, we have 𝛹𝑗∗ (𝑡𝑗∗+1) >
𝜉(𝑡𝑗∗+1)‖, which indicates that no switching will occur. This leads to a
ontradiction. Therefore, the above consideration yields 𝑆𝑞 in (28) has
o stop switching after 𝑡 ∈ [𝑡𝑗∗ ,+∞).

After the switching stops, the monitor function 𝛹 convergences to
ero exponentially, guaranteeing the trajectory of 𝜉 converges to zero
s well. Under Assumption 2.3 and the fact that 𝜉 converges to zero
s 𝑡 → +∞, one concludes that 𝜂 converges to zero asymptotically.
urthermore, with 𝑦 = 𝐶𝑐𝜉, one derives lim𝑡→∞ 𝑦(𝑡) = 0, which ends
he proof. □
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5. Simulation

In this section, we conduct a numerical experiment to validate the
performance and robustness of the proposed control protocol in the
presence of parameter uncertainties and external disturbances.

Consider a nonlinear minimum phase system described by

̇ 1 = 𝑥2,

̇ 2 = −3𝑥1 − 𝜇1𝑥2 + 𝑏(𝑥)𝑢 +
(

𝜇2 sin(𝑥1) + 𝑏(𝑥)
)

𝑑,

𝑦 = 𝑥1 (35)

in which

𝑏(𝑥) =

⎧

⎪

⎨

⎪

⎩

−1 −
𝑥22

1+𝑥22
, if 𝑡 ∈ [0, 30)

1 +
𝑥22

1+𝑥22
if 𝑡 ≥ 30

s the high-frequency gain function satisfying |𝑏(𝑥)| ∈ [1, 2]. The
unknown parameter vector 𝜇 =

(

𝜇1 𝜇2
)⊤ is assumed to satisfy

𝜇 ∈
{

3.5 ≤ 𝜇1 ≤ 4.5,−1 ≤ 𝜇2 ≤ 1
}

.

The external disturbance is expressed as

(𝑡) =
{

5 sawtooth(2𝜋𝑡), if 𝑡 ∈ [0, 15)
5 sin(𝑡 − 1), if 𝑡 ≥ 15

here ‘‘sawtooth(𝑡)’’ is a MATLAB function that can generate a sawtooth
ave with period 2𝜋 for the elements of time 𝑡. 𝑑(𝑡) is norm-bounded
y a constant 𝑑 = 5 that is assumed to be known in prior. Let 𝑑𝑎 ∶=

𝜇2 sin(𝑥1)+𝑏(𝑥)
𝑏(𝑥) 𝑑. The dynamics of 𝑥2 can be rewritten into 𝑥̇2 = −3𝑥1 −

1𝑥2 + 𝑏(𝑥)(𝑢 + 𝑑𝑎).
Given only the output signal 𝑦 is available for controller design and

he initial condition of the plant (35) ranges over a known compact
et

{

𝑥 ∈ R2 ∶ |𝑥𝑖(0)| ≤ 30, 𝑖 = 1, 2
}

, a streamlined procedure to construct
he proposed observer-based controller with the switching mechanism
s as follows:

First, the parameter 𝛽 needed in the certainty-equivalent control
aw (6) is set as 𝛽 = 2 whereas the feedback gain vector 𝐾 =

(

3 4
)

s chosen to place the eigenvalue of 𝐴𝑐 − 𝐵𝑐𝐾 in (2) to the left-half
lane, here for instance, −1,−3. Next, to facilitate a fast convergence
f 𝜉, a sufficiently large  in the HOSM differentiator (10) and other
he tuning gains in (26) are taken according to [31] as  = 20, 𝜏1 =
.5, 𝜏2 = 1.1 and 𝜅1 = 2.12, 𝜅2 = 2.2. Also, a sufficiently large 𝛥
s chosen to be 𝛥 = 20. The gain vector 𝛾 and the transformation

matrix 𝑄 for the interval observer in (15) are selected according to [33]
as 𝛾 =

(

17 52
)⊤ and 𝑄 =

(

−0.4444 0.1111
1.4444 −0.1111

)

so that 𝑄(𝐴𝑐 −

𝛾𝐶𝑐 )𝑄−1 =
(

−4 0
0 −13

)

is a Hurwitz and Metzler matrix, thus satisfying
the condition in Proposition 3.1. Finally, for the monitor function 𝛹
(30) of the switching mechanism (28), we set 𝛩(𝑘) = 𝑘 + 2 that is
monotonically increasing and 𝛩(𝑘) > 1 for all 𝑘 ∈ {0, 1, 2,…} while
a sufficiently small 𝜆𝑚 is set as 𝜆𝑚 = 0.5.

Now, the only parameter unsettled is the saturation constant 𝑢
which needs to be carefully chosen according to the inequalities stated
in Proposition 3.3. Since system (35) is ISS with respect to the inputs
𝑢, 𝑑 and state 𝑥, the upper boundary of 𝑢 satisfies 𝑢 ≤ (1 − 𝜌)𝑙 = +∞.

eminiscent of the compact set of the initial condition aforementioned,
e take the compact set 𝑟 = {𝑥 ∶ ‖𝑥‖ ≤ 𝑟 = 70} for system (35). Then,

he lower boundary of 𝑢 can be computed according to Proposition 3.3
s 𝑢 ≥ 10+ sup𝑥∈𝑟

|(4 − 𝜇1)𝑥2| = 45. Here, we take the saturation value
as 𝑢 = 60.

Based on the preceding parameter design, the controller (6) is given
by

𝑢 = 60 Sat
[

−𝐾𝜉 − 𝛥
90𝑆𝑞

]

in which 𝜉 and 𝛥 are provided by (10) and (24), and 𝑆𝑞 is given by
(28). The HOSM differentiators in (10) and (26) are initialized with
6

Fig. 2. Trajectories of inputs and output of system (35) with 𝑢 = 60.

Fig. 3. Monitor function 𝛹 and switching signal 𝑆𝑞 with 𝑢 = 60.

Fig. 4. Trajectories of inputs and output of system (35) with 𝑢 = 10.

𝜉(0) =
(

0 0
)⊤, 𝜌1(0) = 0.5, 𝜌2(0) = 0. The initial values of interval

observer (15) are 𝜉(0) =
(

1 8
)⊤ and 𝜉(0) =

(

−12 0
)⊤. The switching

signal 𝑆𝑞 is initialized as 𝑆𝑞(0) = 1 which is opposite to the sign of 𝑏(𝑥)
n the beginning. This makes our simulation quite stringent.

The results are depicted in Figs. 2–3. Regardless of the sudden
hange of the structure of the external disturbance 𝑑 at 15 s, and the
hange of sign of 𝑏(𝑥) at 30 s, the output 𝑦 of plant (35) has been
egulated to zero in a rather short time, along with a small overshoot.
t is seen in Fig. 2 that the control input 𝑢 reconstructs the unstructured
xternal disturbance 𝑑 very quickly, which is a remarkable feature of
he developed method. To be notable, Fig. 3 shows that at 30 s, the
witching signal 𝑆𝑞 goes through only one change and remains the
ame, which demonstrates the robustness of our approach concerning
he variation of control direction.

The saturation constant 𝑢 utilized in the preceding simulation is cho-
sen according to Proposition 3.3. It might provide a rather conservative
feasible range for the choice of 𝑢, which is calculated for all initial
conditions and all 𝜇 in the given compact sets. For example, Figs. 4–
5 show that the closed-loop response of system (35) for 𝑢 = 10 still
pertains to satisfactory transient performance, in which no frequent
switches occur and the regulated output converges to zero very quickly.
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Fig. 5. Monitor function 𝛹 and switching signal 𝑆𝑞 with 𝑢 = 10.

Fig. 6. Trajectories of inputs and output of system (35) with 𝑢 = 3.

Fig. 7. Monitor function 𝛹 and switching signal 𝑆𝑞 with 𝑢 = 3.

f we keep decreasing the value of 𝑢, the asymptotic regulation will
ot be achieved and only boundedness of trajectories is guaranteed, as
epicted in Figs. 6–7 for a more limited choice of 𝑢 = 3. In summary,

Figs. 2–7 demonstrate how the closed-loop response of system (35) can
be influenced by the choice of 𝑢 and further, for a practical 𝑢, the
admissible range of 𝑢 is much larger than the theoretical range given
by Proposition 3.3.

6. Conclusions

In this paper, a novel UIO-based regulator is proposed to solve
the output regulation problem for uncertain SISO nonlinear minimum
phase systems with arbitrary relative degrees. The usual assumption
of the sign of the high-frequency gain known as prior is not required.
A finite-time estimator for the parametric uncertainties and external
disturbances in the plant can be implemented from a novel unknown
input observer. The combination of the unknown input observer and
a switching scheme driven by a monitor function allows us to develop
a robust and efficient control protocol. It is shown that the external
disturbance, structured or unstructured, both can be reconstructed and
7

rejected in a finite time. The closed-loop system will be asymptotically
regulated to zero, which is theoretically proven and numerically veri-
fied. We would like to draw the reader’s attention to the remarkable
transient behavior of the system which is mainly due to the use of
a series of HOSM-based observers. The authors realize the potential
chattering phenomena and other limitations of such kind of solution.
Nevertheless, in the case of a structured external disturbance, since the
controller is able to completely recover the disturbance signal 𝑑(𝑡) to
be rejected, one can employ many existing identification techniques to
develop an internal model. Thus, in future work, we tend to embed such
an internal model into the proposed framework to further improve the
performance of the controller. Besides, how to relax Assumption 2.2
will be our future direction.
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Appendix A. Proof of Proposition 3.1

To this end, two necessary lemmas are introduced first:

Lemma A.1 ([34]). Suppose that the matrix 𝐴 ∈ R𝑛×𝑛 is a Metzler and
Hurwitz matrix, besides 𝑑𝑥(𝑡) ∈ R𝑛, 𝑑𝑥(𝑡) ≥ 0, 𝑡 ≥ 0, then the solution of
the dynamics 𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝑑𝑥(𝑡) satisfies 𝑥(𝑡) ≥ 0 for all 𝑡 ≥ 0 if 𝑥(0) ≥ 0.

emma A.2 ([34]). Suppose that the vector variables 𝑥(𝑡) ∈ R𝑛, 𝑥(𝑡) ∈ R𝑛

nd 𝑥(𝑡) ∈ R𝑛 satisfies 𝑥(𝑡) ≤ 𝑥(𝑡) ≤ 𝑥(𝑡), then for any constant matrix
𝑀 ∈ R𝑚×𝑛, we have 𝑀+𝑥(𝑡) −𝑀−𝑥(𝑡) ≤ 𝑀𝑥(𝑡) ≤ 𝑀+𝑥(𝑡) −𝑀−𝑥(𝑡).

Consider the coordinate change 𝜍 ∶= 𝑄𝜉 with the invertible transfor-
ation matrix 𝑄 defined in (15), the dynamics of 𝜉 in (4) is transformed

into

𝜍̇ = 𝑄𝐴𝑐𝑄
−1𝜍 +𝑄𝐵𝑐𝛽𝑆𝑞𝑢 +𝑄𝐵𝑐𝛥(𝜂, 𝜉, 𝑢, 𝑑)

𝑦 = 𝐶𝑐𝑄
−1𝜍.

Define 𝜍𝑒 ∶= 𝜍 − 𝜍 and 𝜍
𝑒
∶= 𝜍 − 𝜍. From (15) and the dynamics of 𝜍, it

follows that

𝜍̇𝑒 = 𝑄(𝐴𝑐 − 𝛾𝐶𝑐 )𝑄−1𝜍𝑒 + 𝛿1,

̇
𝑒
= 𝑄(𝐴𝑐 − 𝛾𝐶𝑐 )𝑄−1𝜍

𝑒
+ 𝛿2,

ith

1 ∶= (𝑄𝐵𝑐 )+𝛥 − (𝑄𝐵𝑐 )−(−𝛥) −𝑄𝐵𝑐𝛥(𝜂, 𝜉, 𝑢, 𝑑),

𝛿2 ∶= 𝑄𝐵𝑐𝛥(𝜂, 𝜉, 𝑢, 𝑑) − (𝑄𝐵𝑐 )+(−𝛥) + (𝑄𝐵𝑐 )−𝛥.

Then, by the selection of 𝛥 in (12) and according to Lemma A.2, we
obtain

𝛿1 = (𝑄𝐵𝑐 )+𝛥 − (𝑄𝐵𝑐 )−(−𝛥) −𝑄𝐵𝑐𝛥(𝜂, 𝜉, 𝑢, 𝑑) ≥ 0,

𝛿2 = 𝑄𝐵𝑐𝛥(𝜂, 𝜉, 𝑢, 𝑑) − (𝑄𝐵𝑐 )+(−𝛥) + (𝑄𝐵𝑐 )−𝛥 ≥ 0.

Under Assumption 2.4 that 𝜉
𝑎
(0) ≤ 𝜉(0) ≤ 𝜉𝑎(0) and by 𝜍(0) = 𝑄𝜉(0),

e derive 𝑄+𝜉
𝑎
(0) − 𝑄−𝜉𝑎(0) ≤ 𝑄𝜉(0) ≤ 𝑄+𝜉𝑎(0) − 𝑄−𝜉

𝑎
(0). Recalling

𝜍(0) = 𝑄+𝜉 (0) − 𝑄−𝜉 (0) and 𝜍(0) = 𝑄+𝜉 (0) − 𝑄−𝜉 (0), thus it follows

𝑎 𝑎 𝑎 𝑎
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that 𝜍(0) ≤ 𝜍(0) ≤ 𝜍(0), that is 𝜍
𝑒
(0) ≥ 0, 𝜍𝑒(0) ≥ 0. Therefore, based on

Lemma A.1, from the dynamics of 𝜍
𝑒
, 𝜍𝑒, if 𝑄(𝐴𝑐 − 𝛾𝐶𝑐 )𝑄−1 is a Metzler

and Hurwitz matrix, we conclude that 𝜍
𝑒
≥ 0 and 𝜍𝑒 ≥ 0 for all 𝑡 ≥ 0.

hus, 𝜍 ≤ 𝜍 ≤ 𝜍 for all 𝑡 ≥ 0. Finally, employing the relation 𝜉 = 𝑄−1𝜍
and Lemma A.2, it follows that 𝜉 ≤ 𝜉 ≤ 𝜉 for all 𝑡 ≥ 0 with 𝜉, 𝜉 defined
in (14).

Appendix B. Proof of Proposition 3.3

Under Assumption 2.2 that |𝑢 + 𝑑| ≤ 𝑙 and |𝑑| ≤ 𝜌𝑙, we require the
pper boundary of 𝑢 satisfying 𝑢 ≤ (1−𝜌)𝑙. Besides, the lower boundary

of 𝑢 should fulfill 𝑢 ≥ 𝑑+ 1
𝑏min

sup𝑧∈𝑟
𝛼(‖𝑧‖), which is always valid under

the restriction ‖(𝜂(0), 𝜉(0))‖ ≤ 𝑙0 on the initial condition. To be clear:
With the locally ISS property under Assumption 2.2, there ex-

ist some class- functions 𝑐0(⋅), 𝑐1(⋅), 𝑐2(⋅), such that sup𝑧∈𝑟
𝛼(‖𝑧‖) =

0(𝑟) ≤ 𝑐1(𝑙)𝑐2(𝑙0). Then if 𝑙0 satisfies

0 ≤ 𝑐−12

(

𝑏min𝑐3(𝑙)
𝑐1(𝑙)

)

ith 𝑐3(𝑙) defined as 𝑐3(𝑙) = (1 − 2𝜌)𝑙, we obtain
1

𝑏min
sup
𝑧∈𝑟

𝛼(‖𝑧‖) ≤ 1
𝑏min

𝑐1(𝑙)𝑐2(𝑙0) ≤ 𝑐3(𝑙),

which implies 𝑑+ 1
𝑏min

sup𝑧∈𝑟
𝛼(‖𝑧‖) ≤ (1−𝜌)𝑙. Thus, the upper boundary

and lower boundary of 𝑢 are always valid with the sacrifice of a small
ompact set for the initial conditions.

To prove 𝑢0 bounded by |𝑢0| ≤ 𝑢, reminiscent of the definition of
𝑢0 and 𝛥 in (5), we replace 𝜉 and 𝛥 with 𝜉 and 𝛥 since 𝜉 = 0 and
̃ = 0 after 𝑇 ≥ 𝑇2. Define 𝛽𝑞 = 𝛽𝑆𝑞 for the sake of clarity and recall
𝛼(‖𝑧‖) ∶= |𝐾𝜉 + 𝑎(𝑧)|. Utilizing 𝑢 ≥ 𝑑 + 1

𝑏min
sup𝑧∈𝑟

𝛼(‖𝑧‖), after 𝑡 ≥ 𝑇2,
we have

|𝑢0| ≤ |

𝐾𝜉 + 𝑎(𝑧)
𝛽𝑞

| + |

𝑏(𝑧) − 𝛽𝑞
𝛽𝑞

|𝑢 + |

𝑏(𝑧)
𝛽𝑞

|𝑑

≤ |

1
𝛽𝑞

| sup
𝑧∈𝑟

𝛼(‖𝑧‖) + |

𝑏(𝑧)
𝛽𝑞

|𝑑 −
(

|𝛽𝑞| − |𝑏(𝑧) − 𝛽𝑞|
|𝛽𝑞|

)

𝑢 + 𝑢

= |

1
𝛽
| sup
𝑧∈𝑟

𝛼(‖𝑧‖) + |

𝑏(𝑧)
𝛽𝑞

|𝑑 −
|𝑏(𝑧)|
|𝛽𝑞|

𝑢 + 𝑢

≤
(

1 −
|𝑏(𝑧)|
𝑏min

)

|

𝑢
𝛽𝑞

| + 𝑢 ≤ 𝑢

where we exploit |𝛽𝑞|− |𝑏(𝑧) − 𝛽𝑞| = |𝑏(𝑧)| if 𝑆𝑞 = sign(𝑏(𝑧)),∀𝑧 ∈ 𝑟 and
𝛽 ≥ 𝑏max.
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